In the previous post in this series parallelling our local discussion seminar on this review, we reminded ourselves of some basic ideas of Markov Chain Monte Carlo simulations. In this post, we are going to look at the Hybrid Monte Carlo algorithm.
To simulate lattice theories with dynamical fermions, one wants an exact algorithm that performs global updates, because local updates are not cheap if the action is not local (as is the case with the fermionic determinant), and which can take large steps through configuration space to avoid critical slowing down. An algorithm satisfying these demands is Hybrid Monte Carlo (HMC). HMC is based on the idea of simulating a dynamical system with Hamiltonian H = 1/2 p2 + S(q), where one introduces fictitious conjugate momenta p for the original configuration variables q, and treats the action as the potential of the fictitious dynamical system. If one now generates a Markov chain with fixed point distribution e-H(p,q), then the distribution of q ignoring p (the "marginal distribution") is the desired e-S(q).
To build such a Markov chain, one alternates two steps: Molecular Dynamics Monte Carlo (MDMC) and momentum refreshment.
MDMC is based on the fact that besides conserving the Hamiltonian, the time evolution of a Hamiltonian system preserves the phase space measure (by Liouville's theorem). So if at the end of a Hamiltonian trajectory of length τ we reverse the momentum, we get a mapping from (p,q) to (-p',q') and vice versa, thus obeying detailed balance: e-H(p,q) P((-p',q'),(p,q)) = e-H(p',q') P((p,q),(-p',q')), ensuring the correct fixed-point distribution. Of course, we can't actually exactly integrate Hamilton's in general; instead, we are content with numerical integration with an integrator that preserves the phase space measure exactly (more about which presently), but only approximately conserves the Hamiltonian. We make the algorithm exact nevertheless by adding a Metropolis step that accepts the new configuration with probability e-δH, where δH is the change in the Hamiltonian under the numerical integration.
The Markov step of MDMC is of course totally degenerate: the transition probability is essentially a δ-distribution, since one can only get to one other configuration from any one configuration, and this relation is reciprocal. So while it does indeed satisfy detailed balance, this Markov step is hopelessly non-egodic.
To make it ergodic without ruining detailed balance, we alternate between MDMC and momentum refreshment, where we redraw the fictitious momenta at random from a Gaussian distribution without regard to their present value or that of the configuration variables q: P((p',q),(p,q))=e-1/2 p'2. Obviously, this step will preserve the desired fixed-point distribution (which is after all simply Gaussian in the momenta). It is also obviously non-ergodic since it never changes the configuration variables q. However, it does allow large changes in the Hamiltonian and breaks the degeneracy of the MDMC step.
While it is generally not possible to prove with any degree of rigour that the combination of MDMC and momentum is ergodic, intuitively and empirically this is indeed the case. What remains to see to make this a practical algorithm is to find numerical integrators that exactly preserve the phase space measure.
This order is fulfilled by symplectic integrators. The basic idea is to consider the time evolution operator exp(τ d/dt) = exp(τ(-∂qH ∂p+∂pH ∂q)) = exp(τh) as the exponential of a differential operator on phase space. We can then decompose the latter as h = -∂qH ∂p+∂pH ∂q = P+Q, where P = -∂qH ∂p and Q = ∂pH ∂q. Since ∂qH = S'(q) and ∂pH = p, we can immediately evaluate the action of eτP and eτQ on the state (p,q) by applying Taylor's theorem: eτQ(p,q) = (p,q+τp), and eτP = (p-τS'(q),q).
Since each of these maps is simply a shear along one direction in phase space, they are clearly area preserving; so are all their powers and mutual products. In order to combine them into a suitable integrator, we need the Baker-Campbell-Hausdorff (BCH) formula.
The BCH formula says that for two elements A,B of an associative algebra, the identity
log(eAeB) = A + (∫01 ((x log x)/(x-1)){x=ead Aet ad B} dt) (B)
holds, where (ad A )(B) = [A,B], and the exponential and logarithm are defined via their power series (around the identity in the case of the logarithm). Expanding the first few terms, one finds
log(eAeB) = A + B + 1/2 [A,B] + 1/12 [A-B,[A,B]] - 1/24 [B,[A,[A,B]]] + ...
Applying this to a symmetric product, one finds
log(e1/2 AeBe1/2 A) = A + B + 1/24 [A+2B,[A,B]] + ...
where in both cases the dots denote fifth-order terms.
We can then use this to build symmetric products (we want symmetric products to ensure reversibility) of eP and eQ that are equal to eτh up to some controlled error. The simplest example is
(eδτ/2 Peδτ Qeδτ/2 P)τ/δτ = eτ(P+Q) + O((δτ)2)
and more complex examples can be found that either reduce the order of the error (although doing so requires one to use negative times steps -δτ as well as positive ones) or minimize the error by splitting the force term P into pieces Pi that each get their own time step δτi to account for their different sizes.
There are a number of material features, such as chemical properties, material hardness, material symmetry, that can be explained by static atomic structure. There are, however, a large number of technically important properties that can only be understood on the basis of lattice dynamics. These include: thermal properties,thermal conductivity, temperature effect, energy dissipation, sound propagation, phase transition, thermal conductivity, piezoelectricity, dielectric and optical properties, thermo-mechanical-electromagnetic coupling properties.
The atomic motions, that are revealed by those features, are not random.,Iin fact they are determined by the forces that atoms exert on each other, and most readily described not in terms of the vibrations of individual atoms, but in terms of traveling waves, as illustrated in Fig.1. Those waves are the normal modes of vibration of the system. The quantum of energy in an elastic wave is called a Phonon;a quantum state of a crystal lattice near its ground state can be specified by the phonons present; at very low temperature a solid can be regarded as a volume containing non-interacting phonons. The frequency-wave vector relationship of phonons is called Phonon Dispersion Relation, which is the fundamental ingredient in the theory of lattice dynamics and can be determined through experimental measurements, such as nNeutron scattering, iInfrared spectroscope and Raman scattering, or first principle calculations or phenomenological modeling. Through phonon dispersion relations, the dynamic characteristics of an atomic system can be represented, the validity of a calculation or a phenomenological modeling can be examined, interatomic force constants can be computed, Born effective charge, on which the strain induced polarization depends, can be obtained, various involved material constants can be determined.
.
Fig.1 Typical motions for two atoms in a unit cell,
where‘L’ stands for longitudinal, ‘T’ transverse, ‘A’ acoustic, ‘O’ optical
Optical Phonons
Optical phonon branches exist in all crystals that have more than one atom per primitive unit cell. In such crystals, the elastic distortions give rise to wave propagation of two types. In the acoustic type (as LA and TA), all the atoms in the unit cell move in essentially the same phase, resulting in the deformation of lattice, usually referred as homogeneous deformation. In the optical type (as LO and TO), the atoms move within the unit cell, leave the unit cell unchanged, contribute to the discrete feature of an atomic system, and give rise to the internal deformations. In an optical vibration of non-central ionic crystal, the relative displacement between the positive and negative ions gives rise to the piezoelectricity. Optics is a phenomenon that necessitates the presence of an electromagnetic field. In ferroelectrics the anomalously large Born effective charges produce a giant LO-TO splitting in phonon dispersion relations. This feature is associated withto the existence of an anomalously large destabilizing dipole-dipole interaction, sufficient to compensate the stabilizing short-range force and induce the ferroelectric instability. Optical phonons, therefore, appears as the key concept to relate the electronic and structural properties through Born effective charge (Ghosez [1995,1997]). The elastic theory of continuum is the long wave limit of acoustic vibrations of lattice, while optical vibration is the mechanism of a lot of macroscopic phenomena involving thermal, mechanical, electromagnetic and optical coupling effects.
Dynamic Feature of Various Types of Crystals
The dynamic characteristics of crystals depend on crystal structures, as shown in Fig.2, and the binding between the atoms.In metals the atomic cores are surrounded by a more-or-less uniform density of free electrons. This gives metals their electrical conductivity and a nonlocal character of the interatomic potential. Its dynamic feature is represented by the dispersive acoustic vibrations. In ionic crystals, strong Coulomb forces and short-range repulsive forces operate between the ions, and the ions are polarizable. The covalent bond is usually formed from two electrons, one from each atom participating in the bond. These electrons tend to be partially localized in the region between the two atoms and constitute the bond charge. The phonon dispersion relations of ionic and covalent crystals have both acoustic and optical branches, their optical vibrations describe the internal motion of atoms within the primitive basis, as in Fig.1 and Fig.3.In molecular crystal there is usually a large difference between the frequencies of modes in which the molecules move as a united units (the external modes) and the modes that involve the stretch and distortion of the molecules (the internal modes). The framework crystals are similar to molecular crystals in that they are composed of rigid groups. The units are very stiff but linked flexibly to each other at the corner atoms. The phonon dispersion relations, as in Fig.4, of molecular and framework crystals include both acoustic and optical vibrations, and the optical vibrations further include internal modes and external modes.
Phonon Dispersion Relations by Various Microcontinuum Theory
Micromorphic theory(Eringen and Suhubi [1964], Eringen [1999])
Micromophic theory views a material as a continuous collection of deformable particles. Each particle is attached with a microstructure of finite size. The deformation of a micromorphic continuum yields both macro-strains (homogeneous part) and microscopic internal strains (discrete part).
Micropolar theory (Eringen and Suhubi [1964])
When the material particle is considered as rigid, i.e., neglecting the internal motion within the microstructure, micromorphic theory becomes micropolar theory. Therefore, micropolar theory yields only acoustic and external optical modes. They are the translational and rotational modes of rigid units. For molecular crystals or framework crystal, or chopped composite, granular material et al, when the external modes in which the molecules move as rigid units have much lower frequencies and thus dominate the dynamics of atoms, micropolar theory can give a good description to the dynamics of microstructure.It accounts for the dynamic effect of material with rather stiff microstructure.
Assuming a constant microinertia, micropolar theory is identical to Cosserat theory [1902], Compared with micropolar theory, Cosserat theory is limited to problems not involving significant change of the orientation of the microstructure, such as liquid crystal and ferroelctrics.
For isotropic material, the phonon dispersion relations based on a nonlocal theory have been obtained by Eringen [1992] as shown in Fig.7. Remarkable similarity to atomic lattice dynamics solution with Born-von Karman model, and to the experimental results for Aluminum has been reported.
Non local theory takes long-range interatomic interaction into consideration. As a consequence it yields results dependent on the size of a body. Similar to classical continuum theory, the lattice particles are taken without structure and idealized as point masses. Hence, the effect of microstructure does not appear. It is not a theory for material with microstructure, but for material involving long-range interaction. It can be applied to crystal that has only one atom per primitive unit cell at various length scales.
Applicability Analysis of Continuum Theories from the Viewpoint of Molecular Dynamics
Micromorphic theory
Atomistic flow mechanisms make it possible to define the fluxes as sums of one- and two-atom contributions. The internal energy e, heat flux q, and the three stress tensors, namely, Cauchy stress t, microstress average s, and moment stress m, are composed of kinetic part and potential part. With the definition of temperature, it is seen that the kinetic parts of t, s, m, q, and eare caused by the thermal motion of atoms, and can be linked to the temperature. The potential parts are caused by the interatomic forces, and can be determined from the potential functions and can be written in terms of lattice strain and internal strains. This is consistent with the constitutive relations of micromorphic theory. Therefore, micromorphic theory, including the mechanical variables, balance laws, and constitutive relations, can be obtained based on the kinetics and interactions of atoms.The correspondence between the molecular dynamics model and the micromorphic theory can be achieved whenever an ensemble average is meaningful. The applicability of micromorphic theory in microscopic time and length scales is confirmed from the viewpoint of molecular dynamics.
Cosserat theory
Compared with micropolar theory, Cosserat theory does not have the balance law of microinertia. The absence of the balance law of microinertia tensor, implies that the microinertia tensor is assumed to be constant. This is the case when the deformation of the microstructure of the particle is very small, and the change of the orientation can be ignored.Hence, compared with micropolar theory, Cosserat theory is not suited for problems involve the significant change of the orientation of the microstructure.
Nonlocal Theory
For each atom (k, a), the interatomic force is taken from all other atoms in the body considered. This action-at-a-distance interactions give the related quantities a nonlocal character. Hence, the molecular dynamics formulation is in the nonlocal arena. Even in the limit case when the unit cell or the material particle only consists of one atom, the expressions and derivation are still applicable to nonlocal phenomena.
Couple stress theory
The couple stress theory, by including higher order stress, provides a model that can yield results depending on the size of specimen. However, there is no distinction between the micromotion and the macromotion, and hence it is only suited for material without microstructure.
The material that does not have microstructure, is referred as microscopically homogeneous, and is corresponding to crystal with only one atom in the unit cell. This follows thatand hence s = t and the moment stress m = 0. The higher order stress, m, is thus removed from the atomic formulation. The couple stress theory then falls into the framework of nonlocal theory, with the strain gradients accounting for the effect of neighborhood.